top of page
Image by Maddison McMurrin

FARR Workshop Agenda

Location:

AGU Conference Center

2000 Florida Ave. NW, Washington, D.C. 20009

 

Wednesday, October 9, 2024
8:00-9:00 am     Breakfast/Registration
9:00-10:30 am     Opening Plenary  - Introduction to FARR 

 

Presenters:

KirkpatrickChristine.jpg

​Moderator:

Christine Kirkpatrick

SDSC, UCSD

ChandiWitharanapage.jpg

Chandi Witharana

University of Connecticut

Satellite Imagery and AI in Action at Pan-Arctic Scale

PFSA24-Vandana-Janeja-8568.jpg

Vandana Janeja

UMBC

​FAIR in Multi-disciplinary Spaces: Is the Data AI Ready, Shareable and Encourages Reproducibility

harris_philip-2022-aspect-ratio-420-334-840x668-c-default.jpg

Philip Harris

MIT

​Building Cross-Disciplinary  Scientific Deep Learning Challenges

10:30-11:00 am       AM Break
11:00 am-12:15 pm     Fully AI Ready Data 

​

​Presenters:

KirkpatrickChristine.jpg

​Moderator:

Christine Kirkpatrick

SDSC, UCSD

jane.webp

Jane Greenberg

Drexel University

The Surging Metadata Wave: Empowering AI with Semantic Systems

ErikSchultes_2.png

Erik Schultes

GO FAIR Foundation

FAIR for AI and AI for FAIR

anu.jpg

Anupama (Anu) Gururaj

DAIT, NIAID, NIH

ImmPort@20: Getting ‘AI ready’ for AI

12:15-1:15 pm       Lunch
1:15-2:00 pm      AI Readiness - repository perspectives

​

​Presenters:

karen stocks.jpg

​Moderator:

Karen Stocks

SIO, UCSD

Doug-Headshot-2.jpg

Doug Schuster

NCAR

 Supporting ML/AI research through NSF NCAR's Emerging Data Commons Services

Tyler_Christensen.jpg

Tyler Christensen

NOAA/NESDIS

​AI-Ready Data at NOAA: a repository perspective

martin.jpg

Martin Seul

CUAHSI Hydroshare

HydroShare AI Readiness – a (small) repository perspective

laney.jpg

Christine Laney

NEON

Generating AI-ready data: perspectives from a continental-scale ecological observatory

2:00-2:45 pm     AI Readiness - research perspectives

​

​Presenters:

karen stocks.jpg

​Moderator:

Karen Stocks

SIO, UCSD

sanjibsharma-final.jpg

Sanjib Sharma

Howard University

Advancing Earth Science Education Through Generative Artificial Intelligence

srija_portrait-1.jpg

Srija Chakraborty

USRA

Monitoring Greenhouse Gas Emitters at Night with Machine Learning Insights on NASA’s Black Marble

hall.jpg

Jazlynn Hall

Cary Institute 

Preparing a time series database for applications in forest ecology and wildfire resilience in the Western U.S.

godwin.jpg

Denys Godwin

Clark University

​Mapping Rooftop Solar across New England

li.jpg

Wenjia Li

University of Idaho

​GeoSymbolNet: Leveraging Data Augmentation to Decipher Geological Map Symbols

jian-gong-square-2024.png

Jian Gong

University of Wyoming

​Curating Multi-source Time Series Image Dataset for Tundra Lakes in the Siberian Arctic  

2:45-3:00 pm     Poster Lightning Talks
Presenters:
See poster session
daniel s katz.png

​Moderator:

Daniel S. Katz

U. of Illinois Urbana-Champaign

3:00-4:00 pm     Poster session / PM Break

Presenters:

yogesh.jpg

Yogesh Bhattarai

Howard University

Integrating open-source geospatial data and machine learning  for enhanced disaster resilience

hass.jpg

Bridget Hass

NEON

NEON Remote Sensing Data in Google Earth Engine to Facilitate FAIR Environmental AI/ML Research

​

owen.jpg

Owen Price Skelly

The University of Chicago

Garden: A FAIR Framework for Publishing and Applying AI Models for Translational Research in Science, Engineering, Education, and Industry

Ilya-Zaslavsky-sdsc.jpg

Ilya Zaslavsky

SDCS, UCSD

Architecting a data hub for modeling climate change effects on the water-food-energy-health nexus components in arid zones based on FAIR principles

mike-c.jpeg

Michael Cecil

University of Maryland

Assessing Smallholder Farmer Planting and Harvest Dates With Geospatial Foundation Models

 

reyna1-300x276.jpg

Reyna Jenkyns

World Data System

Counteracting Concerns of Quality Inputs for AI Applications by Mobilizing Trusted Data Repositories to Demonstrate AI-Readiness

profile-icon-9.png

D. Sarkar, S. Lunawat

Global South in AI, UIUC

Unlearning Bias and Mitigating Security Risks in LLMs

​

 

geoffrey_newweb-13.png

Geoffrey Fox

University of Virginia

​Curating Multi-source Time Series Image Dataset for Tundra Lakes in the Siberian Arctic  

​​​​

laney.jpg

Christine Laney

NEON

Expanding heterogenous ecological data use in AI/ML applications

​​

 

kbs.jpg

Kirubel Biruk Shiferaw

University Medicine Greifswald

 Calibrating reporting guidelines to foster reproducibility in medical AI research

lydia-fletcher.jpg

Lydia Fletcher

TACC, U. of Texas at Austin

Leveraging Emerging AI Tools to Reduce the FAIR Workload

​

 

JosephineNamayanja-e1715272006849.jpg

Josephine Namayanja

U. of Maryland, Baltimore County

A Preliminary Open Science Pipeline to Facilitate AI Reproducibility for Interdisciplinary Communities

​

jianwu.jpg

Jianwu Wang

U of Maryland, Baltimore County

Reproducible and Portable Big Data Analytics in the Cloud

4:00-5:30 pm     FAIR & AI Models

​ ​

Presenters:

geoffrey_newweb-13.png

​Moderator:

Geoffrey Fox

University of Virginia

daniel s katz.png

Daniel S. Katz

U. of Illinois Urbana-Champaign

Introducing the FAIR for Machine Learning (FAIR4ML) RDA interest group

rajat_dp.jpg

Rajat Shinde

U. of Alabama in Huntsville

​GeoCroissant- A Standardized Metadata Format for Geospatial ML-ready Datasets

line.jpeg

Line Pouchard

Sandia National Laboratories​

The role of FAIR in data-intensive, reproducible workflows

ghoshs.png

​Satrajit Ghosh

MIT

Challenges in Performing FAIR and Reproducible Computation

Thursday, October 10, 2024
8:00-9:00 am     Breakfast/Registration
9:00-10:30 am     AI Reproducibility

​ ​

Presenters:

Rao-Douglas.jpg

​Moderator:

Yuhan (Douglas) Rao

North Carolina State University

odd erik gundersen.jpg

Odd Erik Gundersen

Norwegian U. of Sci & Tech

The fundamental principles of reproducibility

kevin.jpeg

Kevin Coakley

SDSC, UCSD

Sources of Irreproducibility in Machine Learning

elizabeth.jpeg

Elizabeth Campolongo

The Ohio State University

FAIR and Reproducible Data, Models, and Workflows in Imageomics

roel.jpg

Roel Janssen

Delft University of Technology

Enabling reproducible, transparent and legally compliant AI in The Netherlands

10:30-11:00 am       AM Break
11:00 am-12:30 pm     Working session
Rao-Douglas.jpg

​Moderator:

Yuhan (Douglas) Rao

North Carolina State University

12:30-1:30 pm       Lunch
1:30-3:00 pm     Future research directions/gaps  

​ ​

Presenters:

Towns-Headshot-May2024.jpg

​Moderator:

John Towns

U of Illinois Urbana-Champaign

al.jpg

Alejandro Suarez

National Science Foundation

Broadening Access to AI Resources through the National AI Research Resource (NAIRR) Pilot

baru_edited.jpg

Chaitan Baru

National Science Foundation

The Open Knowledge Network

mark-musen_profilephoto.jpg

Mark Musen

Stanford University

Representing Standards for FAIR Data in a Machine-Actionable Way

​

KirkpatrickChristine.jpg

Christine Kirkpatrick

SDSC, UCSD

Title TBA

wilbert.jpg

Wilbert van Panhuis

NIH/NIAID

Implementing FAIR and AI Ready Data for Biomedical Research: from Principles to Practice

3:00 pm       Adjourn
bottom of page